Нейрофизиология: как работает наш мозг

Нейрофизиология мозга

Нервная система – важнейшая регуляторная система нашего организма. Но она не одинока, существуют еще две системы: эндокринная и иммунная. И для того, чтобы управлять нашим телом, эти системы выделяют особые вещества. Нервная система выделяет медиаторы, эндокринная – гормоны, иммунная – цитокины. Эти вещества действуют на различные органы, ткани, создают адаптацию к тем или иным условиям окружающей среды. Кроме того, эти три системы влияют друг на друга.

[tds_council]По своим эффектам нервная система является самой быстрой. То, что она делает, получает отражение в нашем поведении, реакциях наших органов уже буквально через миллисекунды, секунды или минуты.[/tds_council]

Эффекты этой системы наиболее точечные, поскольку отростки нервных клеток подходят к различным органам, тканям и очень-очень точно передают информацию на те или иные системы. В этом смысле иммунная и эндокринная системы действуют более примитивно, поскольку цитокины и гормоны попадают в основном в кровь.

Нервная система человека
Нервная система человека

Нервная система в процессе эволюции появляется самой последней среди трех систем, лишь на уровне многоклеточных. Она в первую очередь нужна была для питания, ухода от опасности, размножения. И вначале она представляла собой сеть, позже появились структуры, состоящие из нервных узлов и нервной трубки, наконец произошел процесс цефализации.

Нервные клетки и нейроглии

Наш мозг сформирован из нервной ткани, а ее ключевой элемент – нейроны. Данные клетки выглядят очень характерно, обычно у них большое число отростков, подразделяющихся на два типа: дендриты и аксоны. Первые – это отростки, воспринимающие информацию. Они обычно образуют большие ответвления для того, чтобы этой информации было побольше. Аксон – отросток, проводящий сигналы к другим клеткам. Между двумя этими видами отростков располагается тело нервной клетки, отвечающее в основном за обработку информации.

Наряду с нейронами в составе нервной ткани присутствуют еще вспомогательные клетки — глиальные. Их в среднем в 7 раз больше, чем нейронов, и они механически защищают нервные клетки, создают взаимную электрическую изоляцию, а также формируют ГЭБ, то есть барьер между кровью и мозгом, который следит за проникновением веществ в нервную ткань.

То, что нейроны не делятся, знают все. Но это не дефект нервной клетки, а ее необходимое свойство. Разделиться нейрону – это то же самое, как если бы вы взяли компьютерный диск и разрезали его пополам. У вас не получится два диска, а останется один, причем сломанный. Поэтому если нервные клетки в какой-то части мозга делятся, то это очень особые зоны и очень особые функции, например, обоняние.

Электричество и мозг

Сигнал по нейронам проходит в форме коротких электроимпульсов, именуемых «потенциалами действия». Это своеобразный двоичный код мозга. Длится потенциал действия 1-2 миллисекунды, а его амплитуда составляет 0,1 вольта. При этом выделяют восходящую и нисходящую фазы потенциала действия. На восходящей фазе в нервную клетку входит натрий, а на нисходящей выходит калий.

Таким образом, потенциал действия – это движение не электронов по проводам, а ионов через мембрану. Чтобы это движение происходило, необходимы два условия. Во-первых, в клетке должно быть много калия и мало натрия. Во-вторых, должны работать специальные белки-каналы, которые обеспечивают повышение проводимости мембраны — сначала для натрия, а потом для калия. Знания об этих белках позволяют управлять их работой, например, блокировать возникновение потенциала действия. Свойствами блокады потенциала действия обладают некоторые природные токсины, а также лекарства, которые называются «местные анестетики».

Если потенциал действия возник хотя бы в одной точке мембраны, он дальше разбегается по всей поверхности нервной клетки и достигает окончания аксона, запуская выделение вещества медиатора. Это вещество повлияет на следующие клетки, органы или мышцы. Такое распространение идет достаточно медленно, его скорость составляет 1-10 метров в секунду, максимум – 100-120.

[tds_council]Знания о принципах генерации потенциалов действия позволяют нам оценивать многие аспекты работы нервной системы, заниматься протезированием конечностей или органов чувств.[/tds_council]

Синапсы и медиаторы

Когда потенциал действия достигает окончания аксона, он запускает выделение из этого аксона вещества медиатора. Происходит это в специфических структурах под названием «синапсы». Именно через синапсы нейрон контактирует с какой-нибудь следующей клеткой. Суть функционирования синапса остается достаточно стандартной: медиатор проникает в синаптическую щель и действует на чувствительные белки-рецепторы, находящиеся на поверхности клетки-мишени. Вслед за этим могут наступить два основных исхода: клетка-мишень или возбуждается, или тормозится.

Если происходит возбуждение, мы наблюдаем вход в клетку-мишень ионов натрия, после чего возможно возникновение потенциала действия. Это значит, что какая-то порция информации благополучно миновала синаптическую щель. Передвигаясь вперед, она, возможно, запустит реакцию или попадет в память нейросети. Если наблюдается торможение, в клетку-мишень, как правило, входит хлор или выходит калий, в результате чего клетка-мишень на время становится менее возбудимой.

Строение синапса
Строение синапса

Очень важно то, что на каждом нейроне сходятся сотни и тысячи синапсов, сотни и тысячи аксонов, и сигналы от соседних аксонов суммируются. В итоге нейрон оказывается достаточно сложным вычислительным устройством, которое работает одновременно с сотнями и тысячами информационных каналов. А элементарной структурно-функциональной единицей мозга оказывается все-таки синапс. И вычислительные ресурсы нейросети зависят не от количества нейронов, а от того, насколько много синапсов находится в единице объема нервной ткани, допустим, в одном кубическом миллиметре.

Все знают, что нервные клетки не восстанавливаются. А вот синапсы способны к восстановлению. И если в каком-то месте мозга погибли нервные клетки, то соседние нейроны могут выпустить отростки, установить контакты и с помощью вновь образованных синапсов «зашить дырку» в нейросети. Порой такая нейросеть работает даже лучше, чем исходная.

Химия психики

Список медиаторов, то есть веществ, посредством которых нервные клетки влияют на другие клетки, весьма обширен. Но в нем есть и главные действующие лица, и второстепенные. Основные медиаторы нашей центральной нервной системы: глутамат и ГАМК. Первый является ключевым возбуждающим медиатором нашего мозга. А ГАМК – ключевой тормозный медиатор, он контролирует информационные потоки, не допускает лишние сигналы. Большинство задач, которые решаются нашим мозгом, требуют постоянного, тонкого баланса между глутаматом и ГАМК. Если этот баланс нарушается, появляются разнообразные проблемы, начиная от СДВГ и бессонницы и заканчивая эпилепсией.

Второстепенные медиаторы нужны для функционирования нашей психоэмоциональной сферы. К примеру, дофамин. С этой молекулой связана масса положительных эмоций. Нарушение функций дофамина приводит к таким патологиям, как паркинсонизм и шизофрения. Препараты, схожие с дофамином, работают как наркотики-психостимуляторы.

Еще один медиатор – серотонин. От него зависит целый ряд тормозных функций. Он контролирует центры негативных эмоций и уровень шума в мозговой коре. Благодаря серотонину мышление человека становится более чутким. С данным медиатором связаны препараты, которые мы относим к антидепрессантам. А еще на функции серотонина воздействуют наркотики, способные вызывать галлюцинации.

Эндорфины – ключевые медиаторы, связанные с контролем боли и опять-таки с центрами положительных эмоций. Поэтому на их основе созданы важнейшие группы анальгетиков, а также такие известные наркотические препараты, как морфин и героин, которые влияют на эндорфиновые синапсы.

Список медиаторов можно продолжить: аденозин, глицин, ацетилхолин, норадреналин… Любой из них крайне важен для функционирования мозга и внутренних органов. На их основе созданы важнейшие группы лекарств.

Иерархия отделов мозга

На макроуровне мозг представляет собой сложную иерархию структур. Проще всего устроен спинной мозг. Там мы можем достаточно четко выделить участки, отвечающие за сенсорику; двигательные зоны; вегетативные зоны, которые управляют внутренними органами; интегративные зоны.

В головном мозге сложность структур резко увеличивается, хотя самые нижние зоны – луковица и мост – реализуют довольно простые задачи: дыхание, управление сердечнососудистой системой и так далее.

Надо отметить, что головной мозг эволюционирует вперед и в сторону (как говорят анатомы, рострально и латерально). В нем выделяют структуры, классифицирующиеся по времени возникновения. Древние структуры есть уже у рыб, наших далеких предков. Старые структуры появляются в момент выхода позвоночных на сушу, они часто связаны с деятельностью конечностей. Новые структуры характерны для млекопитающих, а многие из них – лишь для обезьян и человека.

В среднем мозге помещаются древние центры: зрения, слуха, сна, двигательные. Большие полушария — самая крупная часть нашего головного мозга. В них располагаются высшие участки и центры, отвечающие за сенсорику, движение, мышление и так далее.

Промежуточный мозг состоит из верхней зоны (таламуса) и нижней (гипоталамуса). Первый является фильтром, через который проходит практически вся информация, поднимающаяся в наши высшие центры. Второй же преимущественно отвечает за эндокринную и вегетативную регуляцию.

Строение головного мозга
Строение головного мозга

Мозжечок – это центр нашей двигательной памяти, в нем также выделяют новые, старые и древние зоны. Древние отвечают за оптимизацию рефлекторных программ, старые в первую очередь призваны обеспечивать перемещение человека в пространстве (шаг, бег), а новые ответственны за тонкие движения пальцев (например, при игре на музыкальных инструментах, письме, печатании на клавиатуре).

Мозг и потребности

Ключевая задача мозга — руководить поведением, которое в большинстве случаев нацелено на удовлетворение определенной нужды. Есть ряд базовых потребностей, с рождения встроенных в мозг и являющихся основой нашего поведения.

В перечень потребностей прежде всего входят витальные программы, ответственные за выживание человека: питание, защищенность, гомеостаз и так далее. Велика роль социальных программ, отвечающих за жизнь внутри сообщества. И есть особые программы, заставляющие стремиться к свободе, новизне, подражанию.

Центр каждой биологической потребности можно обнаружить в той или иной зоне мозга и проанализировать, на какие факторы реагирует этот центр. Как правило, значимы, во-первых, внешние сигналы, скажем, какие-то болевые стимулы. Во-вторых, внутренние сигналы, допустим, химический состав крови. Огромное значение для некоторых видов поведения имеет гормональный фон.

Врожденно заданная активность центра той или иной потребности во многом определяет наш темперамент, индивидуальную структуру нашей личности. Также очень значима генетическая основа и индивидуальный опыт, особенно тот, который приобретается в начале жизни, в ранний период онтогенеза. В зоопсихологии подобного рода события обозначают понятием «импринтинг».

Каждый конкретный поведенческий акт может приводить либо к удовлетворению потребности, либо к тому, что она не удовлетворяется. Если нужду удается удовлетворить, в мозге генерируются позитивные чувства. Они заставляют мозг запоминать успешные алгоритмы поведения. При фрустрации же возникают негативные чувства. На их основе происходит забывание, снижение рейтинга тех программ, которые окончились неудачей.

Обучение и запоминание

Память

Важнейшим свойством мозга и нейросетей является запоминание. Для образования памяти необходимо модифицировать имеющиеся синапсы, в результате чего внутри нейросети возникают новые каналы для информационной передачи. Этой проблемой начал заниматься еще Иван Петрович Павлов. И то, что он делал со своими экспериментальными собаками, на современном уровне можно назвать «изучением долговременной памяти и процессов формирования новых каналов для трансляции информации в мозговой коре».

[tds_note]Исходя из того, насколько серьезно модифицируются синапсы в ходе обучения, возникает или кратковременная, или долговременная память.[/tds_note]

Ключевой структурой, отвечающей за кратковременную память, является гиппокамп – зона, которая расположена у нас в глубине височных долей. Там находятся особые рецепторы (NMDAR), способные почти мгновенно менять свою активность при получении сильного сигнала. Если возникает большое количество потенциалов действия, эти рецепторы переходят в активное состояние, в результате чего синапсы, где они локализуются, начинают проводить информационные потоки. Это активное состояние сохраняется в течение нескольких часов.

Для возникновения долговременной памяти, как правило, нужно, чтобы в нейронах были синтезированы новые рецепторы, которые встроились бы в мембрану, воспринимающую действие медиатора. Почти всегда данным медиатором является глутамат. Формирование долговременной памяти, как правило, происходит на фоне эмоций, которые генерируются в центре потребностей.

Таким образом, независимо от того, какую конкретно информацию мы запоминаем, в разных частях нашей коры головного мозга происходит одно и то же событие: повышается эффективность синапсов, проводящих сигналы от глутаминовой кислоты. Этот механизм является универсальным способом вписать в нейросеть новую информацию и создать новые каналы для ее проведения.

Мозг и мышление

Высшие функции больших полушарий связаны с ассоциативной корой. Ассоциативность здесь подразумевает то, что она объединяет многие информационные потоки. И на боковой поверхности полушарий мы видим прежде всего ассоциативную теменную кору и ассоциативную лобную кору. Первая занимает в основном заднюю часть теменной доли, располагается она между двумя главными сенсорными центрами. В итоге здесь собирается зрительная, слуховая, тактильная, вкусовая информация и прочие информационные потоки. Формируется целостная сенсорная картина внешнего мира.

Здесь возникает целостное восприятие некого объекта. Если это апельсин, то мы понимаем, что это фрукт, который называется «апельсин», что он имеет круглую форму, имеет оранжевый цвет, пахнет определенным образом и так далее. В этой зоне возникают подобного рода образы, и с ними у человека соединены словесные названия того или иного объекта окружающей среды. Именно ассоциативная теменная кора выступает местом локализации наших речевых центров. Когда этих центров становится много, они собираются в единую систему, которую можно назвать «информационной моделью внешнего мира». С помощью нее мы думаем, творим, мечтаем… Это очень важная часть нашей психической деятельности.

Лобная кора – это главный центр управления поведением. Здесь принимаются решения о запуске тех или иных программ. И первое, что она делает, — это оценивает выраженность различных потребностей. Этот участок мозга выбирает доминирующую нужду, а дальше он должен запустить программу, которая позволила бы эту нужду удовлетворить. При этом лобная кора учитывает сигналы от ассоциативной теменной коры, а также от центров памяти: от гиппокампа, от тех нейросетей, которые модифицировались в ходе долговременного обучения. Она запускает программу и мониторит ее реализацию. Такой мониторинг особенно важен в том случае, если программа длительная, если нужно за каждым этапом смотреть, удалось или не удалось достичь некой текущей цели.

Повреждение этого участка приводит к тому, что такие функции человеческого мозга, как воля и инициатива, очень сильно страдают. Кроме того, свойства ассоциативной лобной коры определяют такие особенности нашего темперамента, как импульсивность и настойчивость.

Опасности и ловушки

За последние 20-30 лет человечество узнало о работе мозга очень-очень много. Эта информация чрезвычайно важна и полезна, если мы хотим как-то корректировать работу нервной системы, улучшать ее, помогать в случае тех или иных патологий. Сейчас мы гораздо яснее видим различные ловушки и проблемы. Например, проблему использования психотропных препаратов. Мы очень четко понимаем, что любой серьезный психотропный препарат (нейролептик, антидепрессант, снотворный препарат) фатально влияет на работу синапсов и состояние нейросетей и вызывает привыкание и зависимость.

В еще большей степени это относится к наркотическим препаратам, которые порой не просто меняют состояние нейросетей на очень длительный срок, но и разрушают эти нейросети и приводят к гибели нервных клеток, например, в центрах положительных эмоций.

Особая группа проблем связана с тем, что мозг человека, судя по всему, слишком быстро эволюционировал. В результате некоторые высшие функции мозга оказались не совсем адекватно инсталлированы, в связи с чем каждый сотый человек является шизофреником, а каждый двухсотый страдает эпилепсией. Список таких проблем можно продолжать. Чтобы корректировать такие патологические состояния организма ученым и медикам придется еще очень много потрудиться.

Наконец, проблема нейродегенерации. Нервные клетки порой накапливают в своей цитоплазме дефектные белки, которые нарушают их работу и приводят к гибели. К сожалению, все усилия нейрофизиологии и других нейронаук пока что не привели к радикальному успеху в этой области. Такие заболевания, как паркинсонизм и болезнь Альцгеймера, мы пока толком лечить не умеем, и это, безусловно, задача 21 века.

Добавить комментарий

Важно! Информация на сайте предназначена для медицинских специалистов и не может быть использована для самолечения. Прежде чем принимать любой медикамент, обязательно проконсультируйтесь с врачом!

© 2019- tabletix.ru
Копирование материалов только при наличии активной ссылки на источник!
Адрес редакции: 122873, г. Москва, ул. Профсоюзная, д. 3, оф. 319
Тел.: +7(495)147-70-75 (пн-пт с 10:00 до 19:00)
По всем вопросам: info@tabletix.ru